

wheezy.http

Introduction

wheezy.http is a python [http://www.python.org] package written in pure Python code.
It is a lightweight http library for things like request,
response, headers, cookies and many others. It a wrapper around the WSGI [http://www.python.org/dev/peps/pep-3333]
request environment.

It is optimized for performance, well tested and documented.

Resources:

	source code [https://github.com/akornatskyy/wheezy.http], examples [https://github.com/akornatskyy/wheezy.http/tree/master/demos] and issues [https://github.com/akornatskyy/wheezy.http/issues] tracker are available
on github [https://github.com/akornatskyy/wheezy.http]

	documentation [https://wheezyhttp.readthedocs.io/en/latest/]

Contents

	Getting Started
	Install

	Examples
	Hello World

	Guest Book

	User Guide
	Configuration Options

	WSGI Application

	Middleware

	HTTP Handler

	HTTP Request

	HTTP Response

	Cookies

	Transforms

	Cache Policy

	Cache Profile

	Content Cache

	WSGI Adapters

	Functional Testing
	Page

	Functional Mixin

	Test Case

	Benchmark

	Modules
	wheezy.http

	wheezy.http.application

	wheezy.http.authorization

	wheezy.http.cache

	wheezy.http.cachepolicy

	wheezy.http.cacheprofile

	wheezy.http.config

	wheezy.http.cookie

	wheezy.http.functional

	wheezy.http.method

	wheezy.http.middleware

	wheezy.http.parse

	wheezy.http.request

	wheezy.http.response

	wheezy.http.transforms

Getting Started

Install

wheezy.http requires python [http://www.python.org] version 3.6+. It is operating system
independent. You can install it from pypi [http://pypi.python.org/pypi/wheezy.http]:

$ easy_install wheezy.http

Examples

Before we proceed let’s setup a virtualenv [http://pypi.python.org/pypi/virtualenv] environment, activate it and
install:

$ pip install wheezy.http

Hello World

helloworld.py [https://bitbucket.org/akorn/wheezy.http/src/tip/demos/hello/helloworld.py] shows you how to use wheezy.http in a pretty
simple WSGI [http://www.python.org/dev/peps/pep-3333] application:

 HTTPResponse,
 WSGIApplication,
 bootstrap_http_defaults,
 not_found,
)

def welcome(request):
 response = HTTPResponse()
 response.write("Hello World!!!")
 return response

def router_middleware(request, following):
 path = request.path
 if path == "/":
 response = welcome(request)
 else:
 response = not_found()
 return response

options = {}
main = WSGIApplication(
 [bootstrap_http_defaults, lambda ignore: router_middleware], options
)

if __name__ == "__main__":
 from wsgiref.simple_server import make_server

 try:
 print("Visit http://localhost:8080/")
 make_server("", 8080, main).serve_forever()
 except KeyboardInterrupt:
 pass
 print("\nThanks!")

Let have a look through each line in this application.

Request Handler

First of all let’s take a look what is request handler:

def welcome(request):
 response = HTTPResponse()
 response.write("Hello World!!!")

It is a simple callable of form:

def handler(request):
 return response

In wheezy.http there are no dependencies between
HTTPRequest and
HTTPResponse.

While wheezy.http doesn’t prescribe what is a router, we add
here a simple router middleware. This way you can use one of available
alternatives to provide route matching for your application.

def router_middleware(request, following):
 path = request.path
 if path == "/":
 response = welcome(request)
 else:
 response = not_found()

There is a separate python package wheezy.routing [http://pypi.python.org/pypi/wheezy.routing] that is recommended
way to add routing facility to your application.

Finally we create the entry point that is an instance of
WSGIApplication.

options = {}
main = WSGIApplication(
 [bootstrap_http_defaults, lambda ignore: router_middleware], options
)

The rest in the helloworld application launches a simple wsgi server.
Try it by running:

$ python helloworld.py

Visit http://localhost:8080/.

Guest Book

TODO

User Guide

wheezy.http is a lightweight WSGI [http://www.python.org/dev/peps/pep-3333] library that aims to take most
benefits out of standard python library. It can be run from python 2.4 up
to most cutting age python 3.

Configuration Options

Configuration options is a python dictionary passed to
WSGIApplication during initialization.
These options are shared across various parts of application, including:
middleware factory, http request, cookies, etc.

options = {}
main = WSGIApplication(
 [bootstrap_http_defaults, lambda ignore: router_middleware], options
)

There are no required options necessarily setup before use, since they
all fallback to some defaults defined in the config module.
Actually options are checked by the
bootstrap_http_defaults() middleware factory
for missing values (the middleware factory is executed only once at
application start up).

See full list of available options in config module.

WSGI Application

WSGI [http://www.python.org/dev/peps/pep-3333] is the Web Server Gateway Interface. It is a specification for
web/application servers to communicate with web applications. It is a
Python standard, described in detail in PEP 3333.

An instance of WSGIApplication is
an entry point of your WSGI [http://www.python.org/dev/peps/pep-3333] application. You instantiate it by supplying
a list of desired middleware factories and global configuration
options. Here is a snippet from Hello World example:

options = {}
main = WSGIApplication(
 [bootstrap_http_defaults, lambda ignore: router_middleware], options
)

An instance of WSGIApplication is
a callable that responds to the standard WSGI [http://www.python.org/dev/peps/pep-3333] call. This callable is passed to
application/web server. Here is an integration example with the
web server from python standard wsgiref package:

 from wsgiref.simple_server import make_server

 try:
 print("Visit http://localhost:8080/")
 make_server("", 8080, main).serve_forever()
 except KeyboardInterrupt:
 pass

The integration with other WSGI [http://www.python.org/dev/peps/pep-3333] application servers varies. However the
principal of WSGI [http://www.python.org/dev/peps/pep-3333] entry point is the same across those implementations.

Middleware

The presence of middleware, in general, is transparent to the application
and requires no special support. Middleware is usually characterized by
playing the following roles within an application:

	It is singleton, there is only one instance per application.

	It is sort of interceptor of incoming request to handler.

	They can be chained so one pass request to following as well as capable
to inspect response, override it, extend or modify as necessary.

	It capable to supply additional information in request context.

Middleware can be any callable of the following form:

def middleware(request, following):
 if following is not None:
 response = following(request)
 else:
 response = ...
 return response

A middleware callable accepts as a first argument an instance of
HTTPRequest and as second argument (following) the next middleware in the
chain. It is up to middleware to decide whether
to call the next middleware callable in the chain. It is expected that middleware
returns an instance of HTTPResponse class or
None.

Middleware Factory

Usually middleware requires some sort of initialization before being used.
This can be some configuration variables or sort of preparation, verification,
etc. Middleware Factory serves this purpose.

Middleware factory can be any callable of the following form:

def middleware_factory(options):
 return middleware

Middleware factory is initialized with configuration options, it is the
same dictionary used during
WSGIApplication
initialization. Middleware factory returns particular middleware implementation
or None (this can be useful for some sort of initialization that needs
to be run during application bootstrap, e.g. some defaults, see
bootstrap_http_defaults()).

In case the last middleware in the chain returns None it is equivalent
to returning HTTP response not found (HTTP status code 404).

Execution Order

Middleware is initialized and executed in certain order. Let’s setup a simple
application with the following middleware chain:

app = WSGIApplication(middleware=[
 a_factory,
 b_factory,
 c_factory
])

Initialization and execution order is the same - from first element in the
list to the last:

a_factory => b_factory => c_factory

In case a factory returns None it is being skipped from middleware list.
Let assume b_factory returns None, so the middleware chain become:

a => c

It is up to middleware a to call c before or after its own
processing. WSGIApplication in no way
prescribes it, instead it just chains them. This gives great power to the middleware
developer to take control over certain implementation use case.

HTTP Handler

Handler is any callable that accepts an instance of
HTTPRequest and returns
HTTPResponse:

def handler(request):
 return response

Here is an example:

def welcome(request):
 response = HTTPResponse()
 response.write("Hello World!!!")

wheezy.http does not provide HTTP handler implementations (see
wheezy.web [http://pypi.python.org/pypi/wheezy.web] for this purpose).

@accept_method

Decorator accept_method accepts only
particular HTTP request method if its argument (constraint) is a string:

@accept_method('GET')
def my_view(request):
 ...

or one of multiple HTTP request methods if the argument (constraint) is a list or tuple:

@accept_method(('GET', 'POST'))
def my_view(request):
 ...

Method argument constraint must be in uppercase.

Respond with an HTTP status code 405 (Method Not Allowed) in case incoming HTTP
request method does not match decorator constraint.

@secure

Decorator secure accepts only secure
requests (those that are communication via SSL):

@secure
def my_view(request):
 ...

Its behavior can be controlled via enabled (in case it is
False no checks are performed, defaults to True).

HTTP Request

HTTPRequest is a wrapper around WSGI environ
dictionary. It provides access to all variables stored within the environ as well
as provide several handy methods for daily use.

HTTPRequest includes the following useful
attributes (they are evaluated only once during processing):

	method - request method (GET, POST, HEAD, etc)

	host - request host; depends on WSGI variable HTTP_HOST.

	remote_addr - remote address; depends on WSGI variable REMOTE_ADDR.

	root_path - application virtual path; environ SCRIPT_NAME
plus /.

	path - request url path; environ SCRIPT_NAME plus PATH_INFO.

	query - request url query; data are returned as a dictionary. The
dictionary keys are the unique query variable names and the values are
lists of values for each name. Supports a compact form in which the
param may be given once but set to a list of comma-separated
values (e.g., ‘id=1,2,3’).

	form - request form; data are returned as a dictionary. The dictionary
keys are the unique form variable names and the values are lists of values
for each name. Supports the following mime types:
application/x-www-form-urlencoded, application/json and
multipart/form-data.

	files - request form files; data are returned as a dictionary. The
dictionary keys are the unique file variable names and the values are lists
of files (cgi.FieldStorage) for each name.

	cookies - cookies passed by browser; an instance of dict.

	ajax - returns True if current request is AJAX request.

	secure - determines whether the current request was made via SSL
connection; depends on WSGI variable wsgi.url_scheme.

	scheme - request url scheme (http or https); depends on
WSGI variable wsgi.url_scheme.

	urlparts - returns a tuple of 5, corresponding to request url: scheme,
host, path, query and fragment (always None).

	content_type - returns the MIME content type of the incoming request.

	content_length - returns the length, in bytes, of content sent by
the client.

	stream - returns the contents of the incoming HTTP entity body.

Form and Query

While working with request form/query you get a dictionary. The dictionary
keys are the unique form variable names and the values are lists of values
for each name. There usually exists just one value, so working with list is
not that convenient. You can use get_param or first_item_adapter or
last_item_adapter (see wheezy.core [http://pypi.python.org/pypi/wheezy.core]):

>>> from wheezy.core.collections import last_item_adapter
...
>>> request.query['a']
['1', '2']
>>> query = last_item_adapter(request.query)
>>> query['a']
'2'
>>> request.get_param('a')
'2'

While you are able initialize your application models by requesting
certain values from form or query, there is a separate python
package wheezy.validation [http://pypi.python.org/pypi/wheezy.validation] that is recommended way to add forms
facility to your application. It includes both model binding as well
as a number of validation rules.

Supported content types: application/x-www-form-urlencoded,
application/json and multipart/form-data.

HTTP Response

HTTPResponse correctly maps the following
HTTP response status codes (according to rfc2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html]):

HTTP_STATUS = {
 # Informational
 100: "100 Continue",
 101: "101 Switching Protocols",
 # Successful
 200: "200 OK",
 201: "201 Created",
 202: "202 Accepted",
 203: "203 Non-Authoritative Information",
 204: "204 No Content",
 205: "205 Reset Content",
 206: "206 Partial Content",
 207: "207 Multi-Status",
 # Redirection
 300: "300 Multiple Choices",
 301: "301 Moved Permanently",
 302: "302 Found",
 303: "303 See Other",
 304: "304 Not Modified",
 305: "305 Use Proxy",
 307: "307 Temporary Redirect",
 # Client Error
 400: "400 Bad Request",
 401: "401 Unauthorized",
 402: "402 Payment Required",
 403: "403 Forbidden",
 404: "404 Not Found",
 405: "405 Method Not Allowed",
 406: "406 Not Acceptable",
 407: "407 Proxy Authentication Required",
 408: "408 Request Timeout",
 409: "409 Conflict",
 410: "410 Gone",
 411: "411 Length Required",
 412: "412 Precondition Failed",
 413: "413 Request Entity Too Large",
 414: "414 Request-Uri Too Long",
 415: "415 Unsupported Media Type",
 416: "416 Requested Range Not Satisfiable",
 417: "417 Expectation Failed",
 # Server Error
 500: "500 Internal Server Error",
 501: "501 Not Implemented",
 502: "502 Bad Gateway",
 503: "503 Service Unavailable",
 504: "504 Gateway Timeout",
 505: "505 Http Version Not Supported",
}

HTTP_HEADER_CACHE_CONTROL_DEFAULT = ("Cache-Control", "private")

Content Type and Encoding

You instantiate HTTPResponse and initialize
it with content_type and encoding:

>>> r = HTTPResponse()
>>> r.headers
[('Content-Type', 'text/html; charset=UTF-8')]
>>> r = HTTPResponse(content_type='image/gif')
>>> r.headers
[('Content-Type', 'image/gif')]

>>> r = HTTPResponse(content_type='text/plain; charset=iso-8859-4',
... encoding='iso-8859-4')
>>> r.headers
[('Content-Type', 'text/plain; charset=iso-8859-4')]

Buffered Output

HTTPResponse has two methods to buffer
output: write and write_bytes.

Method write let you buffer response before it actually being
passed to application server. The write method does encoding of input
chunk to bytes accordingly to response encoding.

Method write_bytes buffers output bytes.

Other Members

Here are some attributes available in
HTTPResponse:

	cache - setup HTTPCachePolicy.
Defaults to private cache policy.

	cache_dependency - a list of keys; used to setup dependency for given
request thus effectively invalidating cached response depending on some
application logic. It is a hook for integration with wheezy.caching [http://pypi.python.org/pypi/wheezy.caching].

	headers - list of headers to be returned to browser; the header must
be a tuple of two: (name, value). No checks for duplicates.

	cookies - list of cookies to set in response. This list contains
HTTPCookie objects.

Redirect Responses

There are a number of handy preset redirect responses:

	permanent_redirect() - returns permanent
redirect response. The HTTP response status 301 Moved Permanently
is used for permanent redirection.

	redirect(),
found() - returns redirect response.
The HTTP response status 302 Found is a common way of performing a
redirection.

	see_other() - returns see other redirect
response. The HTTP response status 303 See Other is the correct manner
in which to redirect web applications to a new URI, particularly after
an HTTP POST has been performed. This response indicates that the correct
response can be found under a different URI and should be retrieved
using a GET method. The specified URI is not a substitute reference for
the original resource.

	temporary_redirect() - returns temporary
redirect response. In this occasion, the request should be repeated with
another URI, but future requests can still use the original URI.
In contrast to 303, the request method should not be changed when reissuing
the original request. For instance, a POST request must be repeated using
another POST request.

AJAX Redirect

Browsers incorrectly handle redirect response to AJAX requests, so there is
used status code 207 that javascript is capable to receive and process
browser redirect.

	ajax_redirect() - returns ajax redirect
response.

Here is an example for jQuery:

$.ajax({
 // ...
 success: function(data, textStatus, jqXHR) {
 if (jqXHR.status == 207) {
 window.location.replace(
 jqXHR.getResponseHeader('Location'));
 } else {
 // ...
 }
 }
});

If AJAX response status code is 207, browser navigates to URL specified
in HTTP response header Location.

Error Responses

There are a number of handy preset client error responses:

	bad_request(),
error400() - the request cannot be fulfilled
due to bad syntax.

	unauthorized(),
error401() - similar to 403 Forbidden,
but specifically for use when authentication is possible but has failed
or not yet been provided.

	forbidden(),
error402() - The request was a legal request,
but the server is refusing to respond to it.

	not_found(),
error404() - The requested resource could not
be found but may be available again in the future. Subsequent requests by
the client are permissible.

	method_not_allowed(),
error405() - a request was made of a resource
using a request method not supported by that resource; for example, using
GET on a form which requires data to be presented via POST, or using PUT on
a read-only resource.

	internal_error(),
error500() - returns internal error response.

	http_error() - returns a response with
given status code (between 400 and 505).

JSON

There is integration with wheezy.core [http://pypi.python.org/pypi/wheezy.core] package in json object encoding.

	json_response() - returns json response.
Accepts two arguments obj and optional encoding that defaults
to UTF-8.

Here is simple example:

from wheezy.http import bad_request
from wheezy.http import json_response

def now_handler(request):
 if not request.ajax:
 return bad_request()
 return json_response({'now': datetime.now()})

Requests other than AJAX are rejected, return JSON response with
current time of server.

Cookies

HTTPCookie is implemented according to
rfc2109 [http://www.ietf.org/rfc/rfc2109.txt]. Here is a typical usage:

response.cookies.append(HTTPCookie('a', value='123', options=options))

In case you would like delete a certain cookie:

response.cookies.append(HTTPCookie.delete('a', options=options))

Security

While the idea behind secure cookies is to protect value (via some sort
of encryption, hashing, etc), this task is out of scope of this package.
However you can use Ticket from wheezy.security [http://pypi.python.org/pypi/wheezy.security] package for this
purpose; it supports encryption, hashing, expiration and verification.

Transforms

Transforms is a way to manipulate handler response accordingly to some
algorithm. Typical use case includes: runtime minification, hardening
readability, gzip, etc. While middleware is applied to whole application,
transform in contrast to particular handler only.

Transform is any callable of this form:

def transform(request, response):
 return response

There is a general decorator capable of applying several transforms to a response.
You can use it in the following way:

from wheezy.http.transforms import gzip_transform
from wheezy.http.transforms import response_transforms

@response_transforms(gzip_transform(compress_level=9))
def handler(request):
 return response

If you need apply several transforms to handler here is how you can do that:

@response_transforms(a_transform, b_transform)
def handler(request):
 return response

Order in which transforms are applied are from first argument to last:

a_transform => b_transform

GZip Transform

It is not always effective to apply gzip encoding to whole applications.
While in most cases WSGI applications are deployed behind reverse proxy
web server, it is more effective to use its capabilities of response
compression (10-20% productivity gain with nginx). ON the other side, gzipped
responses stored in cache are even better, since compression is done once
before being added to cache. This is why there is a gzip transform.

Here is a definition:

def gzip_transform(compress_level=6, min_length=1024, vary=False):

compress_level - the compression level, between 1 and 9, where 1
is the least compression (fastest) and 9 is the most (slowest)

min_length - sets the minimum length, in bytes, of the
first chunk in response that will be compressed. Responses
shorter than this byte-length will not be compressed.

vary - enables response header “Vary: Accept-Encoding”.

Cache Policy

HTTPCachePolicy controls cache
specific http headers: Cache-Control, Pragma, Expires, Last-Modified,
ETag, Vary.

Cacheability Options

While particular set of valid HTTP cache headers depends on certain
use case, there are distinguished three of them:

	no-cache - indicates cached information should not be used and
instead requests should be forwarded to the origin server.

	private - response is cacheable only on the client and not by
shared (proxy server) caches.

	public - response is cacheable by clients and shared (proxy)
caches.

Useful Methods

HTTPCachePolicy includes the
following useful methods:

	private(*fields) - indicates that part of the response message is
intended for a single user and MUST NOT be cached by a shared cache.
Only valid for public cacheability.

	no_cache(*fields) - the specified field-name(s) MUST NOT be sent
in the response to a subsequent request without successful re-validation
with the origin server. Not valid for no-cache cacheability.

	no_store() - the purpose of the no-store directive is to prevent
the inadvertent release or retention of sensitive information.

	must_revalidate() - because a cache MAY be configured to ignore a
server’s specified expiration time, and because a client request MAY
include a max-stale directive (which has a similar effect), the
protocol also includes a mechanism for the origin server to require
re-validation of a cache entry on any subsequent use.

	proxy_revalidate() - the proxy-revalidate directive has the same
meaning as the must-revalidate directive, except that it does not
apply to non-shared user agent caches.

	no_transform() - the cache or proxy MUST NOT change any aspect
of the entity-body that is specified by this header, including the
value of the entity-body itself.

	append_extension(extension) - appends the extension to the
Cache-Control HTTP header.

	max_age(delta) - accept a response whose age is no greater than
the specified time in seconds. Not valid for no-cache cacheability.

	smax_age(delta) - if a response includes an s-maxage directive, then
for a shared cache (but not for a private cache). Not valid for
no-cache cacheability.

	expires(when) - gives the date/time after which the response is
considered stale. Not valid for no-cache cacheability.

	last_modified(when) - the Last-Modified entity-header field
indicates the date and time at which the origin server believes
the variant was last modified. Not valid for no-cache cacheability.

	etag(tag) - provides the current value of the entity tag for the
requested variant. Not valid for no-cache cacheability.

	vary(*headers) - indicates the set of request-header fields that
fully determines, while the response is fresh, whether a cache is
permitted to use the response to reply to a subsequent request without
re-validation. Not valid for no-cache cacheability.

Examples

You can use extend(headers) method to update headers with this
cache policy (this is what HTTPResponse
does when cache attribute is set):

>>> headers = []
>>> p = HTTPCachePolicy('no-cache')
>>> p.extend(headers)
>>> headers
[('Cache-Control', 'no-cache'),
('Pragma', 'no-cache'),
('Expires', '-1')]

Public caching headers:

>>> from datetime import datetime, timedelta
>>> from wheezy.core.datetime import UTC
>>> when = datetime(2011, 9, 20, 15, 00, tzinfo=UTC)
>>> headers = []
>>> p = HTTPCachePolicy('public')
>>> p.last_modified(when)
>>> p.expires(when + timedelta(hours=1))
>>> p.etag('abc')
>>> p.vary()
>>> p.extend(headers)
>>> headers # doctest: +NORMALIZE_WHITESPACE
[('Cache-Control', 'public'),
('Expires', 'Tue, 20 Sep 2011 16:00:00 GMT'),
('Last-Modified', 'Tue, 20 Sep 2011 15:00:00 GMT'),
('ETag', 'abc'),
('Vary', '*')]

While you do not directly make a call to extend headers from cache policy,
it is still useful to experiment within a python console.

Cache Profile

CacheProfile combines a number of
settings applicable to http cache policy as well as server side cache.

Cache Location

CacheProfile supports the following
list of valid cache locations:

	none - no server or client cache.

	server - only server side caching, no client cache.

	client - only client side caching, no server cache.

	both - server and client caching.

	public - server and client caching including intermediate proxies.

Here is a map between cache profile cacheability and http cache policy:

 "server": "no-cache",
 "client": "private",
 "both": "private", # server and client
 "public": "public",
}

Cache profile method cache_policy is adapted according the above map.

Typical Use

You create a cache profile by instantiating
CacheProfile and passing in the following
arguments:

	location - must fall into one of acceptable values as defined
by SUPPORTED.

	duration - time for the cache item to be cached.

	no_store - instructs state of no-store http response header.

	vary_query - a list of query items that should be included into cache
key.

	vary_form - a list of form items that should be included into cache
key.

	vary_environ - a list of environ items that should be included into
cache key (particularly useful to vary by HTTP headers, request scheme, etc).

	vary_cookies - a list of cookies that should be included
into cache key.

	http_vary - manages HTTP cache policy Very header.

	etag_func - a function used to setup HTTP cache policy
ETag header. See make_etag() and
make_etag_crc32().

	namespace - a namespace to be used in server cache operations.

	enabled - determines whenever this cache profile is enabled.

Here is an example:

cache_profile = CacheProfile('client', duration=timedelta(minutes=15))

cache_profile = CacheProfile('both', duration=15)

It is recommended to define cache profiles in a separate module and import them
as needed into a various parts of application. This way you can achieve
better control with a single place of change.

Content Cache

Content caching is the most effective type of cache. This way your application
code doesn’t have to process to determine a valid response to user. Instead
a response is returned from cache. Since there is no heavy processing and just simple
operation to get an item from cache, it should be super fast. However not
every request can be cached and whether it can completely depends on your application.

If you show a list of goods and it has not changed in any way (price is the same,
etc.) why would you make several calls per second every time it requested
and regenerate the page again? You can apply cache profile to response and it
will be cached according to it rules.

What happens if the price has been changed, but the list of goods cacheability
was set to 15 mins? How to invalidate the cache? This is where CacheDependency
comes to the rescue. The core feature of cache dependency is implemented in
package wheezy.caching [http://pypi.python.org/pypi/wheezy.caching], however http module supports its integration.

Cache Contract

Cache contract requires: get(key, namespace),
set(key, value, time, namespace),
set_multi(mapping, time, namespace) and
incr(self, key, delta=1, namespace=None, initial_value=None).
Look at wheezy.caching [http://pypi.python.org/pypi/wheezy.caching] package for more details.

@response_cache

response_cache() decorator is used to apply
cache feature to handler. Here is an example that includes also
CacheDependency:

from wheezy.caching.patterns import Cached
from wheezy.http import CacheProfile
from wheezy.http import none_cache_profile
from wheezy.http import response_cache
from myapp import cache

cached = Cached(cache, time=15)
cache_profile = CacheProfile('server', duration=15)

@response_cache(cache_profile)
def list_of_goods(request):
 ...
 response.cache_dependency.append('list_of_goods:%s:' % catalog_id)
 return response

@response_cache(none_cache_profile)
def change_price(request):
 ...
 cached.dependency.delete('list_of_goods:%s:' % catalog_id)
 return response

While list_of_goods is being cached, change_price handler
effectively invalidates list_of_goods cache result, so next call
will fetch an updated list.

Note, cache dependency keys must not end with a number.

Cache Middleware

The response_cache() decorator is applied to
handler. It is pretty far from the WSGI entry point, there are number
of middlewares as well as routing in between (all these are relatively
time consuming, especially routing). What if we were able determine
cache profile for the given request earlier, being the first middleware
in the chain. This is where
HTTPCacheMiddleware comes to the scene.

HTTPCacheMiddleware serves exactly
this purpose. It is initialized with two arguments:

	cache - a cache to be used (must be thread safe, see
wheezy.caching [http://pypi.python.org/pypi/wheezy.caching] for various implementations).

	middleware_vary - a strategy to be used to determine cache profile key
for the incoming request.

Here is an example:

cache = ...
options = {
 'http_cache': cache
}

main = WSGIApplication([
 http_cache_middleware_factory()
], options)

middleware_vary is an instance of
RequestVary. By default it varies
cache key by HTTP method and path. Let assume we would like vary middleware
key by HTTP scheme:

options = {
 ...
 'http_cache_middleware_vary': RequestVary(
 environ=['wsgi.url_scheme'])
}

Request Vary

RequestVary is designed to compose
a key depending on number of values, including: headers, query, form and
environ. It always varies by request method and path.

Here is a list of arguments that can be passed during initialization:

	query - a list of request url query items.

	form - a list of form items submitted via http POST method.

	environ - a list of items from environ.

The following example will vary incoming request by request url query
parameter q:

request_vary = RequestVary(query=['q'])

Note that you can vary by HTTP headers via environ names. A missing value is
distinguished from an empty one.

RequestVary is used by CacheProfile
and HTTPCacheMiddleware internally.

WSGI Adapters

wheezy.http providers middleware adapters to be used for
integration with other WSGI applications:

	WSGIAdapterMiddleware - adapts WSGI
application response (initialization requires wsgi_app argument to
be passed).

	EnvironCacheAdapterMiddleware - adapts
WSGI environ variables: wheezy.http.cache_policy,
wheezy.http.cache_profile,
wheezy.http.cache_dependency for http content caching
middleware.

See the demo example in the wsgi_adapter [https://github.com/akornatskyy/wheezy.http/tree/master/demos/wsgi_adapter] application.

Functional Testing

Functional testing is a type of black box testing. Functions are tested by
feeding them input and examining the output. Internal program structure
is rarely considered.

Let take a look at functional tests for Hello World application:

from wheezy.http.functional import WSGIClient

class HelloWorldTestCase(unittest.TestCase):
 def setUp(self):
 from helloworld import main

 self.client = WSGIClient(main)

 def tearDown(self):
 del self.client
 self.client = None

 def test_welcome(self):
 """Ensure welcome page is rendered."""
 assert 200 == self.client.get("/")
 assert "Hello" in self.client.content

 def test_not_found(self):
 """Ensure not found status code."""
 assert 404 == self.client.get("/x")

wheezy.http comes with a WSGIClient
that simulates calls to a WSGI [http://www.python.org/dev/peps/pep-3333] application.

While developing functional tests it is recommended to distinguish three
primary actors:

	Page

	Functional Mixin

	Test Case

Let’s demo this idea in a scenario where we would like to test a signin process.

Page

Page provides a number of asserts to prove the current content is related to
given page. Since this page will be used to submit signin information we need
find a form as well. Here is our signin page:

class SignInPage(object):

 def __init__(self, client):
 assert '- Sign In</title>' in client.content
 assert AUTH_COOKIE not in client.cookies
 assert XSRF_NAME in client.cookies
 self.client = client
 self.form = client.form

 def signin(self, username, password):
 form = self.form
 form.username = username
 form.password = password
 self.client.submit(form)
 return self.client.form.errors()

We add as much asserts as necessary to prove this is the signin page. We look at
title, check cookies and select form. signin method implements a simple
use case to initialize a form with parameters passed, submit the form and return
back any errors found.

Consider using PageMixin to
simplify form submit use cases.

Functional Mixin

Functional mixin is more like a high level actor. While considered to be developed as
mixin, your actual test case can combine them as much as necessary, to fulfill
its goal. Here is a singin mixin:

class SignInMixin(object):

 def signin(self, username, password):
 client = self.client
 assert 200 == client.get('/en/signin')
 page = SignInPage(client)
 return page.signin(username, password)

It is up to functional mixin to implement a particular use case. However it is recommended that its method represents an operation particular to given domain,
abstracting details like url, form, etc.

Test Case

While page and functional mixin play distinct simple roles, test case tries
to get as much as possible to accomplish a number of use cases. Here is a
test case:

class SignInTestCase(unittest.TestCase, SignInMixin):

 def setUp(self):
 self.client = WSGIClient(main)

 def tearDown(self):
 del self.client
 self.client = None

 def test_validation_error(self):
 """ Ensure sigin page displays field validation errors.
 """
 errors = self.signin('', '')
 assert 2 == len(errors)
 assert AUTH_COOKIE not in self.client.cookies

 def test_valid_user(self):
 """ Ensure sigin is successful.
 """
 self.signin('demo', 'P@ssw0rd')
 assert 200 == self.client.follow()
 assert AUTH_COOKIE in self.client.cookies
 assert XSRF_NAME not in self.client.cookies
 assert 'Welcome demo' in self.client.content

Test case can use many functional mixins to accomplish its goal. Test case in
general is a set of conditions under which we can determine whether an
application is working correctly or not. The mechanism for determining
whether a software program has passed or failed such a test is known as a
test oracle. In some settings, an oracle could be a requirement or use case,
while in others it could be a heuristic. It may take many test cases to
determine that a software program or system is considered sufficiently
scrutinized to be released. Being able combine and reuse test case building
blocks is crucial.

Benchmark

You can benchmark your test cases with wheezy.core.benchmark.Benchmark.
Here is an example:

""" ``benchmark_views`` module.
"""

from wheezy.core.benchmark import Benchmark

from public.web.tests.test_views import PublicTestCase

class BenchmarkTestCase(PublicTestCase):

 def runTest(self):
 """ Perform bachmark and print results.
 """
 p = Benchmark((
 self.test_home,
 self.test_about,
 self.test_static_files,
 self.test_static_file_not_found,
 self.test_static_file_forbidden,
 self.test_static_file_gzip,
 self.test_head_static_file
), 1000)
 p.report('public', baselines={
 'test_home': 1.0,
 'test_about': 0.926,
 'test_static_files': 1.655,
 'test_static_file_not_found': 0.64,
 'test_static_file_forbidden': 0.62,
 'test_static_file_gzip': 8.91,
 'test_head_static_file': 9.08
 })

Report

Sample output:

public: 7 x 1000
baseline throughput change target
 100.0% 839rps +0.0% test_home
 96.2% 807rps +3.9% test_about
 235.7% 1979rps +42.4% test_static_files
 72.4% 608rps +13.1% test_static_file_not_found
 72.3% 607rps +16.6% test_static_file_forbidden
 1141.4% 9585rps +28.1% test_static_file_gzip
 1193.6% 10023rps +31.5% test_head_static_file

Each of seven test cases has been run 1000 times. It shows productivity gain
from first test case (it serves as a baseline for others), throughput
in requests per second, change from baselines argument passed to
report method and targeted being benchmarked.

Report is being printed as results become available.

Consider using BenchmakrMixin
to get benchmark results close to WSGI application entry point.

Organizing Benchmarks

It is recommended keep benchmark tests separated from others tests in
files with prefix benchmark, e.g. benchmark_views.py. This way
they can be run separately. Here is an example how to run only the benchmark
tests with nose:

$ nosetests-2.7 -qs -m benchmark src/

This method of benchmarking does not involve the web server layer, nor http
traffic, instead it gives you an idea of how performance of your handlers
evolves over time.

Profiling

Since benchmark does certain workload on your application that workload
is a good start point for profiling your code as well as analyzing
productivity bottlenecks.

Here we are running the profiler:

$ nosetests-2.7 -qs -m benchmark --with-profile \
 --profile-stats-file=profile.pstats src/

Profiling results can be further analyzed with:

gprof2dot.py -f pstats profile.pstats | dot -Tpng -o profile.png

Profiling your application lets you determine performance critical places that
might require further optimization.

Performance

You can boost WSGIClient form
parsing performance by installing the lxml [http://lxml.de/parsing.html] package. WSGIClient tries to use
HTMLParser from the lxml.etree package and if it is not available
falls back to the default parser in the standard library.

Modules

wheezy.http

wheezy.http.application

wheezy.http.authorization

wheezy.http.cache

wheezy.http.cachepolicy

wheezy.http.cacheprofile

wheezy.http.config

def bootstrap_http_defaults(options):
 """Bootstraps http default options."""
 options.setdefault("ENCODING", "UTF-8")
 options.setdefault("MAX_CONTENT_LENGTH", 4 * 1024 * 1024)
 options.setdefault("HTTP_COOKIE_DOMAIN", None)
 options.setdefault("HTTP_COOKIE_SAMESITE", None)
 options.setdefault("HTTP_COOKIE_SECURE", False)
 options.setdefault("HTTP_COOKIE_HTTPONLY", False)
 return None

wheezy.http.cookie

wheezy.http.functional

wheezy.http.method

wheezy.http.middleware

wheezy.http.parse

wheezy.http.request

wheezy.http.response

wheezy.http.transforms

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 wheezy.http

 		
 Getting Started

 		
 Install

 		
 Examples

 		
 Hello World

 		
 Request Handler

 		
 Guest Book

 		
 User Guide

 		
 Configuration Options

 		
 WSGI Application

 		
 Middleware

 		
 Middleware Factory

 		
 Execution Order

 		
 HTTP Handler

 		
 @accept_method

 		
 @secure

 		
 HTTP Request

 		
 Form and Query

 		
 HTTP Response

 		
 Content Type and Encoding

 		
 Buffered Output

 		
 Other Members

 		
 Redirect Responses

 		
 AJAX Redirect

 		
 Error Responses

 		
 JSON

 		
 Cookies

 		
 Security

 		
 Transforms

 		
 GZip Transform

 		
 Cache Policy

 		
 Cacheability Options

 		
 Useful Methods

 		
 Examples

 		
 Cache Profile

 		
 Cache Location

 		
 Typical Use

 		
 Content Cache

 		
 Cache Contract

 		
 @response_cache

 		
 Cache Middleware

 		
 Request Vary

 		
 WSGI Adapters

 		
 Functional Testing

 		
 Page

 		
 Functional Mixin

 		
 Test Case

 		
 Benchmark

 		
 Report

 		
 Organizing Benchmarks

 		
 Profiling

 		
 Performance

 		
 Modules

 		
 wheezy.http

 		
 wheezy.http.application

 		
 wheezy.http.authorization

 		
 wheezy.http.cache

 		
 wheezy.http.cachepolicy

 		
 wheezy.http.cacheprofile

 		
 wheezy.http.config

 		
 wheezy.http.cookie

 		
 wheezy.http.functional

 		
 wheezy.http.method

 		
 wheezy.http.middleware

 		
 wheezy.http.parse

 		
 wheezy.http.request

 		
 wheezy.http.response

 		
 wheezy.http.transforms

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

